An Empirical Study of Semi-supervised Structured Conditional Models for Dependency Parsing
نویسندگان
چکیده
This paper describes an empirical study of high-performance dependency parsers based on a semi-supervised learning approach. We describe an extension of semisupervised structured conditional models (SS-SCMs) to the dependency parsing problem, whose framework is originally proposed in (Suzuki and Isozaki, 2008). Moreover, we introduce two extensions related to dependency parsing: The first extension is to combine SS-SCMs with another semi-supervised approach, described in (Koo et al., 2008). The second extension is to apply the approach to secondorder parsing models, such as those described in (Carreras, 2007), using a twostage semi-supervised learning approach. We demonstrate the effectiveness of our proposed methods on dependency parsing experiments using two widely used test collections: the Penn Treebank for English, and the Prague Dependency Treebank for Czech. Our best results on test data in the above datasets achieve 93.79% parent-prediction accuracy for English, and 88.05% for Czech.
منابع مشابه
Title of Thesis: Learning Structured Classifiers for Statistical Dependency Parsing Learning Structured Classifiers for Statistical Dependency Parsing
In this thesis, I present three supervised and one semi-supervised machine learning approach for improving statistical natural language dependency parsing. I first introduce a generative approach that uses a strictly lexicalised parsing model where all the parameters are based on words, without using any part-of-speech (POS) tags or grammatical categories. Then I present an improved large margi...
متن کاملParsing Natural Language Sentences by Semi-supervised Methods
We present our work on semi-supervised parsing of natural language sentences, focusing on multi-source crosslingual transfer of delexicalized dependency parsers. We first evaluate the influence of treebank annotation styles on parsing performance, focusing on adposition attachment style. Then, we present KLcpos3 , an empirical language similarity measure, designed and tuned for source parser we...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملSemi-supervised structured prediction models
Learning mappings between arbitrary structured input and output variables is a fundamental problem in machine learning. It covers many natural learning tasks and challenges the standard model of learning a mapping from independently drawn instances to a small set of labels. Potential applications include classification with a class taxonomy, named entity recognition, and natural language parsin...
متن کاملSyntax-based Semi-Supervised Named Entity Tagging
We report an empirical study on the role of syntactic features in building a semisupervised named entity (NE) tagger. Our study addresses two questions: What types of syntactic features are suitable for extracting potential NEs to train a classifier in a semi-supervised setting? How good is the resulting NE classifier on testing instances dissimilar from its training data? Our study shows that ...
متن کامل